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I. Introduction

This is the third year of a training grant, which supports graduate students and research
associates for pursuing breast cancer research using NMR techniques. There are three graduate
students (Emmanuel Agwu, Lisa Kinnard and Raymond Malveaux) and two postdoctoral
research associates (Ercheng Li and Renshu Zhang) supported by this grant. Emmanuel Agwu is
a 7" yr MD/PhD student completing his MD program and is continuing his Ph.D. degree in
Biochemistry. Lisa Kinnard is a graduate student from the Department of Electrical Engineering.
She received her Ph.D. degree in June 2003. Raymond Malveaux is a second year medical
student who started research in this lab at the beginning of the summer 2003. Ercheng Li is a
NMR/MRI specialist. Renshu Zhang is a radiologist.

All the trainees, except Raymond Malveaux have rotated through the mammography
service in the Department of Radiology to learn the mammography procedures. Besides
attending the weekly seminars in the Cancer Center, the trainees also have attended a special
seminar series on breast imaging sponsored by this grant and the Department of Electrical
Engineering. Dr. Li and Dr. Zhang have also attended two half-day workshops at Walter Reed
Hospital on small animal models for breast cancer research. Each trainee has actively
participated in one of the two separate research projects. Based on the experimental findings, two
papers were published. Two posters have been presented and one abstract has been submitted to
three national scientific meetings. A list of the publications is included in the reportable
outcomes section in this report. Lisa Kinnard has been awarded a postdoctoral grant by the US
Medical Army Command. The PI has been awarded a Medical Student Departmental grant by
the Radiological Society of Northern America.

II. Body

This year, we have concentrated on two research areas: (1) imaging processing
techniques to separate the malignant and benign masses on digital mammograms (2) the role of
P-glycoprotein modulation in drug-drug interaction.

Segmentation of Mammographic Masses Project

Mammography combined with a clinical examination is a standard method used for the
detection and diagnosis of breast cancer. However, mammography alone can produce a high
percentage of false positives. A computer-aided diagnostic (CADx) system can serve as a more
accurate clinical tool for the radiologist, consequently lowering the rate of missed breast cancer
and ultimately lowering morbidity and mortality. Breast cancer can exist not only in the form
of masses, but also in the forms of microcalcifications, asymmetric density, and architectural
distortion. These abnormalities can be seen using imaging techniques such as mammography,
ultrasound and magnetic resonance imaging (MRI). Breast images have different appearances
based upon their amounts of fibroglandular and fatty tissue. Fibroglandular tissue usually
consists of a combination of breast glands (lobules), ducts, and surrounding fibrosis (fibrous
connective tissue and scarring). It appears denser or brighter than fatty tissue on mammograms
due to its higher x-ray attenuation. The diseased tissue usually also becomes denser over time.
Masses can have unclear borders and are sometimes overlapped with glandular tissue in
mammograms; therefore, the radiologists can overlook them during their search for suspicious




areas. Proper segmentation to include the shape and boundary characteristics is an essential
step in aiding the computer for the analysis and malignancy determination of the mass. While
many CADx systems have been developed, the development of effective image segmentation
algorithms for breast masses remains unsolved in this field, particularly in the cases where the
breast tissue is dense. Since cancerous masses often appear to be light and have ill-defined
borders, it is quite challenging for mammographers to extract them from surrounding tissue. It
is even more difficult to automatically segment masses from dense tissue. We have developed a
fully automated segmentation algorithm, which delineates the complete mass as with minimum
normal structures in dense and mixed tissue mammograms. The research has been summarized
in three published papers listed in the appendix. An abstract, which has been submitted to an
ISMRM workshop, is attached in the appendix.

P-glycoprotein Modulation Project

Cancer patients are often treated with combination therapy for secondary symptoms such
as depression, and cardiopulmonary diseases. The potential for drug-drug interaction under these
conditions is high. Such interactions may cause changes in the pharmacokinetics, especially for
drugs with narrow therapeutic indices. These changes can alter efficacy and toxicity of the
administered drugs. Drug-drug interactions may occur due to common metabolic pathways, but
also due to interference at the P-glycoprotein (Pgp) level. Pgp, which is a nonspecific transport
protein, is expressed constitutively at the blood-brain-barrier (BBB), intestine, kidney, liver,.and
in activated T-cells. Interaction at the blood-brain-barrier may occur if one of the two
concomitantly administered drugs blocks Pgp thus allowing the other drug to penetrate the brain
freely. The potential for drug-drug interactions is not routinely studied at the Pgp level during
drug development. Its presence is assumed only after unexpected clinical symptoms. We have
proposed using a dynamic NMR method based on detection of a fluorinated drug, trifluoperazine
(TFP), in the brain, in combinations with an immune suppressor, cyclosporin A to demonstrate
the drug penetration through the blood-brain-barrier due to Pgp modulation. ‘

III. Key Research Accomplishments
Statement of Work: (expected in year 3)

Predoctoral Student:

e Introduction to the Biomedical NMR Laboratory and the Cancer Center
Raymond Malveaux was introduced to the lab and the Cancer Center. He learned the basic
NMR imaging and spectroscopy techniques. He participated in the Pgp project. He is
regularly attending the lab group meeting each week.

e Report to MD/PhD committee and respective department on progress of research
Emmanuel Agwu has reported to his PhD thesis committee twice during the year. He
finished the medical school and received a MD degree. Lisa Kinnard successfully defended
her PhD thesis in June 2003. She will be a postdoc at the Howard University Cancer Center.

e Clinical preceptorship one half day per week
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Both students have rotated through the Department of Radiology Mammography Division.
Lisa Kinnard also has worked with Dr. Freedman in the Department of Radiology at
Georgetown University Hospital.

Postdoctoral Student:

e Select a new research project approved by the Executive Committee
Dr. Li and Dr. Zhang have began working on the P-glycoprotein modulation project studying
drug-drug interaction, which is an important issue for cancer therapy.

e Clinical preceptorship one half day per week
Dr. Li and Dr. Zhang have worked with Dr. Duckett in the Department of Radiology
studying breast cancer image pattern, clinically indeterminate cases, image pattern analysis
of masses vs. microcalcifications, and biopsy procedures.

e Conduct the new research project ,
The new research project: 1F NMR detection of trifluoperazine crossing blood-brain-barrier
through Pgp modulation.

e Present progress report to the Executive Committee once every six months
The progress of research was reported to the Executive Committee routinely.

o Present research results to the Cancer Center faculty and National Meeting
An abstract on the P-glycoprotein study has been submitted to the International Society of
Magnetic Resonance in Medicine Workshop for presentation in September 2003. '

e Write scientific papers
The trainees and PI are in the process of writing a paper entitled “I%F NMR Study of
Trifluoperazine Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation™.

IV.  Reportable Outcomes

Papers:

1. LoS-C.B,LiH, Wang Y, Kinnard L, Freedman M, A Multiple Circular Path
Convolution Neural Network System for Detection of Mammographic Masses, IEEE
Transactions on Medical Imaging, Vol 21, No 2 pp 150-158. 2002 (not included in the
2002 report)

2. Kinnard L, Lo S-C B, Wang PC, Freedman MT, Chouikha M, Automatic Segmentation
of Mammographic Masses Using Fuzzy Shadow and Maximum-likelihood Analysis,
Proc of IEEE Symposium on Biomedical Imaging (Cat 02EX608C): pp. 241-244, 2002.

3. Kinnard L, Lo S-C.B, Wang PC, Freedman MT, Chouikha M, Separation of Malignant
and Benign Masses Using Image and Segmentation Features. Proc. of SPIE, 2003 (in
press)

Presentations:

1. Kinnard L, Lo S-C B, Wang PC, Freedman MT, Chouikha M. A Maximum-likelihood
Automated Approach to Breast Mass Segmentation. 2002 1st IEEE International
Symposium on Biomedical Imaging: Macro to Nano, Washington, DC, July 7-10, 2002.

2. Kinnard L, Lo S-C B, Wang PC, Freedman MT, Chouikha M. Likelihood Features with
Circular Processing-based Neural Network for the Enhancement of Mammographic Mass




Classification. SPIE Medical Imaging Conference. San Diego, CA, February, 2003.

3. Wang PC, Aszalos A, Li E, Zhang R, Song H, A Phamacokinetic Study of
Trifluoperazine Crossing Blood-Brain-Barrier Due to P-glycoprotein Modulation.
International Society of Magnetic Resonance in Medicine, Workshop on Dynamic
Spectroscopy and Measurements of Physiology, Metabolism and Function. Orlando, Fl,
September 6-8, 2003 (submitted).

Degrees Awarded:

1. Mr. Emmanuel Agwu, an MD/PhD student received a MD degree from the School of
Medicine in June 2003. Mr. Agwu is a 31 year PhD student in the Department of
Biochemistry.

2. Ms. Lisa Kinnard received a PhD degree in June 2003 from the Department of Electrical
Engineering. Her PhD thesis title is “Segmentation of Malignant and Benign Masses in
Digitized Mammograms Using Region Growing Combined with Maximum-Likelihood”.

Funding Applied and Received:

1. Ms. Lisa Kinnard has been awarded a Post-Doctoral Award from the US Army Medical
Command entitled “ Computer-Aided Detection of Mammographic Masses in Dense
Breast Images” "

2. Dr. Paul Wang received a Research and Education Foundation Medical Student

" Departmental Grant entitled “19F NMR Detection of Trifluoperazine Crossing Blood-

Brain-Barrier Through Pgp Modulation” (MSD0306) from the Radiology Society of
Northern America.

V. Conclusion

Lisa Kinnard has presented a new semi-automated mass segmentation scheme that
combines maximum-likelihood theory with an adaptive region growing technique and area
function analysis. This method has been tested on a database containing 137 mammograms of
mixed visual subtlety as determined by expert radiologists. Expert radiologists have validated
this segmentation scheme. It is robust and capable to distinguish the malignant masses over
benign masses with reasonable confidence. This segmentation method will be incorporated into a
computer-assisted mass diagnostic system to be used as a training tool for radiology residents.

The P-glycoprotein study has demonstrated that concomitantly administered a Pgp
modulator enhanced TFP, an anti-psychotic drug, crossing blood-brain-barrier in vivo. It also
demonstrated the pharmacokinetics of TFP accumulation in the brain. The pharmacology of this
noninvasive model for realizing opening of the blood-brain-barrier in case of possible drug-drug
interaction at the ng level was based on drug know to modulate Pgp and on the drug which can
be detected by °F NMR spectroscopy. In case of polypharmacy, like with elderly or cancer
patients, drug-drug interaction is not always understood. The noninvasive dynamic NMR
spectroscopy study of drug-drug interactions can be a very useful tool in drug development.
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A Multiple Circular Path Convolution

Neural Network System for Detection
of Mammographic Masses

Shih-Chung B. Lo*, Member, IEEE, Huai Li, Member, IEEE, Yue Wang, Member, IEEE, Lisa Kinnard, and
Matthew T. Freedman

~ Abstract—A multiple circular path convolution neural network
(MCPCNN) architecture specifically designed for the analysis of
tumor and tumor-like structures has been constructed. We first
divided each suspected tumor area into sectors and computed the
defined mass features for each sector independently. These sector
features were used on the input layer and were coordinated by con-
volution kernels of different sizes that propagated signals to the
second layer in the neural network system. The convolution ker-
nels were trained, as required, by presenting the training cases to
the neural network.

In this study, randomly selected mammograms were processed
by a dual morphological enhancement technique. Radiodense
areas were isolated and were delineated using a region growing al-
gorithm. The boundary of each region of interest was then divided
into 36 sectors using 36 equi-angular dividers radiated from the
center of the region. A total of 144 Breast Imaging—Reporting
and Data System-based features (i.e., four features per sector for
36 sectors) were computed as input values for the evalnation of this
newly invented neural network system. The overall performance
was 0.78-0.80 for the areas (A.) under the receiver operating
characteristic curves using the conventional feed-forward neural
network in the detection of mammographic masses. The perfor-
mance was markedly improved with A, values ranging from 0.84
to 0.89 using the MCPCNN. This paper does not intend to claim
the best mass detection system. Instead it reports a potentially
better neural network structure for analyzing a set of the mass
features defined by an investigator.

Manuscript received February 22, 2000; revised January 11, 2002. This work
was supported by the US Army under Grant DAMD17-96-1-6254 through
a subcontract from University of Michigan, Ann Arbor, and under Grant
DAMD17-01-1-0267 through a subcontract from Howard University. The work
of Y. Wang was supported by the US Army under Grant DAMD17-98-1-8045.
The work of L. Kinnard was supported by the US Army under Grant DAMD
17-00-1-0291. Tke content of this paper does not necessarily reflect the
position or policy of the government. The Associate Editor responsible for
coordinating the review of this paper and recommending its publication was N.
Karssemeijer. Asterisk indicates corresponding author.
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System, Radiology Department, Georgetown University Medical Center, 2115
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I. INTRODUCTION

T IS KNOWN that effective treatment of breast cancer calls

for early detection of cancerous lesions (e.g., clustered mi-
crocalcifications and masses associated with malignant cellular
processes) [1}-[3]. Breast masses appear as areas of increased
density on mammograms. It is particularly difficult for radi-
ologists to detect and analyze a suspected area where a mass
is overlapped with dense breast tissue. These masses are more
readily seen as time progresses, but the further the tumor has
progressed, the lower the possibility of a successful treatment.
Therefore, increasing the chances of early breast cancer detec-
tion in improving today’s clinical system is of vital importance
in breast cancer diagnosis.

Several research groups have developed computer algorithms
for automated detection of mammographic masses [4]-[8].
Some of these methods involved in classification of masses and
normal dense breast tissues [7], [8]. Investigators also attempted
to classify the malignant or benign nature of the detected tu-
mors [9]-[11]. It is conceivable that correct segmentation of the
masses [12] plays an important processing step prior to further
mass analysis. In short, the results of these detection programs
indicate that a high true-positive (TP) rate can be obtained
at the expense of two or three false-positive (FP) detections
per mammogram. Mammographically, a multiplicity (more
than two) of similar benign-appearing breast lesions argues
strongly for benignity [13}-{16] and, indeed, the more masses
that are identified, the less chance that they represent cancer
[17]. If the computer indicates multiple suspicious locations
on a mammogram, the radiologist has to se¢k out one mass
that possesses mammographic features, which are different
from the others. The significant lesion may be missed due to
the multiplicity of possible lesions. We, therefore, believe that
a more useful and fundamental approach to computer-aided
diagnosis (CAD) of masses is to devise computer programs to
analyze features of a suspected area [18], [19] and to provide
feature measures and estimates of the likelihood of malignancy
by making comparisons within a digital mammographic
database. The computer, therefore, serves as a second opinion
and also provides a reproducible and an objective evaluation
of the mass. With this aid, the radiologist may also increase
his/her sensitivity by lowering the threshold of suspicion, while
maintaining the overall specificity and reading efficiency.

0278-0062/02$17.00 © 2002 IEEE
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II. CLINICAL BACKGROUND OF BREAST LESIONS AND
TECHNICAL APPROACH IN MASS DETECTION

A. Description of Clinical Background

Most commonly, breast cancer presents itself as a mass. The
same lesion shows a somewhat different picture from one pro-
jection to the other. Difficulties in masses also vary with the
underlying breast parenchyma. In the fatty breast, masses are
generally easy to detect. In the dense breast, mass detection
is more difficult and auxiliary signs aid this detection. When
the breast contains one mass, the decision process is based on
its size, shape, and margins. When there are several masses,
one looks at each, trying to determine whether any has fea-
tures to suggest cancer. Furthermore, one looks to see if any
mass is different in appearance from the others. Multiple small,
well-defined, similar masses that present themselves bilaterally
are all likely to be benign. Large, poorly defined, spiculated
and unusually radiodense masses are extremely likely to be ma-
lignant. In this study, we used several computational features
(see Section III-B) highly associated with four major features
of breast masses routinely used in clinical reading:

Density:  Malignant lesions tend to have greater radio-
graphic density due to high attenuation and less
compressibility of cancer than normal tissue.
Radiolucent lesions are typically benign and the
diagnosis can be made from the mammogram.

Size: If the lesion has morphological features sug-
gesting malignancy, it should be considered
suspicious regardless of the size. Isolated
masses with noncystic densities greater than
8 mm in diameter can be malignant. In general,
the larger a lesion, the more suspicious it is.

Shape: The more irregular the shape of a lesion, the
more likely the possibility of malignancy. Le-
sions tend to be round, ovoid and/or lobulated.
Small and frequent lobulations are suspicious.
Lesions in the lateral aspect of the breast near the
edge of the parenchyma with a reniform shape
and a hilar indentation or notch usually repre-
sent a benign intramammary lymph node. Breast
carcinoma hidden in the dense tissues can cause
parenchymal retraction, which possess different
shapes.

Margins:  The margins of the lesion should be carefully
evaluated for areas of spiculation, stellate pat-
terns or ill-defined regions. Most breast cancers
have ill-defined margins secondary to tumor in-
filtration and associated fibrosis. The appearance
of spiculations and a more diffuse stellate pat-
tern are almost pathognomonic for cancer. Le-
sions with sharply defined margins have a high
likelihood of being benign; however, up to 7% of
malignant lesions can be well circumnscribed.

These are known clinical features and have been adapted in
“Breast Imaging—Reporting and Data System” (BI—RAD)
[20] of the American College of Radiology. Fig. 1(2) and (b)
shows two breast images containing masses. In Fig. 1(a), a
malignant mass is superimposed on the dense glandular tissue.
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Fig. 1. (a) Dense breast containing a malignant mass. (b) Fatty and glandular
breast containing a malignant mass.

However, its spiculated nature makes it easily identifiable.
In Fig. 1(b), another malignant mass is located on the fatty
background but is associated with a large body of glandular
tissue. This mass is not easily detectable by the computer
because its density is lower than the neighboring glandular
tissue. Furthermore, one end of the mass is fully connected
with this tissue.

B. Technical Approach for Detection of Mammographic
Masses

In this study, our goal was to detect clinically suspicious le-
sions. The differentiation of benign and malignant status of the
mammographic masses can be extended from this study model
and will be reported in our future work. The study was con-
ducted with the following steps: 1) use background correction
method and morphological operations to extract radio-opaque
areas; 2) delineate the boundary of the areas; 3) compute the fea-
tures and texture of the masses with emphasis on the boundary;
and 4) design training strategy using neural networks as classi-
fiers for the recognition of mass features. The overall detection
scheme of the study framework is shown in Fig. 2.

III. DEVELOPMENT OF TECHNICAL METHODS
A. Preprocessing and Extraction of Suspicious Masses

In automatic mass detection, accurate selection of suspected
masses is considered a critical first step due to the variability
of normal breast tissue and the lower contrast and ill-defined
margins of masses. In our previous study [18], we aimed to im-
prove the task of lesion site selection using model-based image
processing techniques for unsupervised lesion site selection. We
focused on two essential issues in the stochastic model-based
image segmentation: enhancement and model selection. Based
on the differential geometric characteristics of masses against
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Fig. 2. A system flow chart for the detection of masses in this study.

the background tissues, we proposed one type of morpholog-
ical operation to enhance the mass patterns on mammograms
by removing high intensity background caused by breast tis-
sues while maintaining mass-signals [18]. Then we employed
a finite generalized Gaussian mixture (FGGM) distribution to
model the histogram of the mammograms where the statistical
properties of the pixel images are largely unknown and are to
be incorporated. We incorporate the expectation-maximization
algorithm with two information theoretic criteria to determine
the optimal number of image regions and the kernel shape in
the FGGM model. Finally, we applied a contextual Bayesian
relaxation labeling (CBRL) technique to perform the selection
of suspected masses.

We consistently processed the mammograms using this
prescreening segmentation method. In the previous study [18],
the FGGM method isolated 1142 potential masses including
114 of the 186 true masses in 200 mammograms. The mammo-
grams were collected from the Mammographic Image Analysis
Society (MIAS) database [21] and Brook Army Medical Center
(BAMC) database. After morphological enhancement, 3143
potential masses were extracted using the FGGM technique.
Of them, 181 were masses; however, five masses were not
extracted. The results demonstrated that more true masses were
picked up after enhancement although more false cases were
also included. The undetected areas mainly occurred at the
lower intensity side of the shaded objects or more obscured
by fibroglandular tissues that, however, were extracted on
morphological enhanced mammograms. Additionally, when
the margins of masses are ill defined, only parts of suspicious
masses were extracted from the original mammograms. We,
therefore, decided to use the proposed morphological operation
as a preprocessing step for the image enhancement prior to a
segmentation method for the extraction of potential masses on
the mammograms.

Based on the CBRL segmented region of interest (ROI), we
employed a region growing method using a four-neighbors con-
nection method assisted with a template masking operation to
fill unconnected holes in the ROI

IF f(x —a,y—b) >Vand f(z,y) €S,
then f(z—a,y—-b) €S (1)
IF flzx—d,y—d) €S, then fx —t,y—3s)€S

fort<dands<d (#))
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where V' denotes the threshold value of the originally CBRL
segmented ROI, S represents the set of growing region, and
[a, b] is a set of four conditions (i.e., [1, 0], [—1, 0, [0, 1], and
[0, —1]) for the four neighboring pixels. In (2), d is the size of
template. In practice, we found that d should be set at five pixels
to fill the holes without disrupting the boundary.

B. Feature Extraction of the Masses

Feature extraction methods play an essential role in many
pattern recognition tasks. Once the features associated with an
image pattern are extracted accurately, they can be used to dis-
tinguish one class of patterns from the others. Recently, many
investigators have found that the multilayer perceptron (MLP)
neural network using the error backpropagation training tech-
nique is a very powerful tool to serve as a classifier [22], [23].
In fact, the use of MLP neural network system for classification
of disease patterns has been widely applied in the field of CAD
[24}-{28].

The success of using a classifier for a pattern recognition task
would rely on two factors: 1) selected features that could de-
scribe a discrepancy between image pattems and 2) accuracy of
the feature computation. Should either one fail, no analyzer or
classifier would be able to achieve an expected performance. By
analyzing many clinical samples of various sizes of masses, we
found that the peripheral portion of the mass plays an important
role for mammographers to make a diagnosis. The mammogra-
pher usually evaluates the surrounding background of a radio-
dense area when a region is suspected.

We used the CBRL segmented ROI to compute the center.
Since the segmented ROIs were somewhat smaller than the
mammographer’s delineation and on the denser region of the
suspected patch, the computed centers were quite close to the
visual center. We then divided the boundary of the ROI into
36 sectors (i.e., 10° per sector) using 36 equi-angular dividers
radiated from the center of the ROIL The following features
were computed within each 10° sector of the region.

a) “I”—the length from the center of the ROI to the boundary
segment of the sector.

b) “ae”—the cos(f) (where 6 is the normal angle of the
boundary).

¢) “g”—the average gradient of gray value on the segment
along the radial direction (i.e., g = 221 {g:/N}) where
N is the number of pixels of ¢ along the radial direction
from I/3 inside the boundary to the boundary (see the left




Fig. 3. A suspicious mass is delincated and shown as the shaded region.
Contrast is computed by subtracting the average background pixel value
(ie, bo, 0 = 1,2,...P) from the average foreground value (i.e, h;,
t1=1,2,...P).

1/3 line segment, Fig. 3). Technically speaking, this set
of gradient values may also serve as a fuzzy system on
the input layer in the neural network (to be described in
Section ITI-C).

d) “c"—the gray value difference (i.e., contrast)
along the radial direction. Specifically, ¢ =
Tia{hi/P} — Toi{b./P} where hi (or b,)
represents a pixel value along the radial direction. The
position I/3 inside the boundary is the center of pixels
hi i = 1,2,3,...P) and position I/3 outside the
boundary is the center of pixels b, (0 = 1, 2, 3, ... P),
and P is the number of pixels equivalent to a segment of
1/6 and was used for averaging (see Fig. 3).

Hence, a total of 144 computed features (four features/sector
for 36 sectors) were used as input values for the classification
of the ROL. The relationship between the computed features and
BI—RADS descriptors are discussed below.

i) ROI Size—The size of ROI is provided by the 36 “I”

values.

ii) ROI Shape (round, oval, lobulated, or irregular)—The 36
“I” and 36 “a” values can describe the shape of the ROIL.

iii) ROI Margin (circumscribed, microlobulated, obscured,
ill- defined, or spiculate}—The 36 “g” and 36 “I” values
can describe the ROI margin.

iv) ROI Density (fat-containing, low density, isodense, or
highly dense)}—The 36 “c” and 36 “g” values can be used
to describe the density distribution of the ROI.

In short, the selected features are greatly associated with the
main mass descriptors indicated in the B—RADS. The reason
for using 36 values for each nominated feature is four-fold:
1) mass boundary varies, it is difficult to describe an image pat-
ten using a single value; 2) due to the general shape of the
masses, the features of masses can be easily analyzed by the
polar coordinate system; 3) in case some features are inaccu-
rately computed in several directions due to the structure noises,
such as the breast slender lines, there may still exist a suffi-
cient number of correct features; and 4) generally more accu-
rate results can be produced by using subdivided parameters
rather than using global parameters in a pattern recognition task
when the parameters are barely discernable and sample sizes are
sufficiently large. Other computational features (e.g., difference
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entropy [19] and other higher order features) are eligible but re-
quire further investigation.

C. The Neural Network Structure Specifically Designed for the
Extracted Boundary Features

1) Multiple Paths With Circular Networking to Instruct the
Neural Network in Analyzing Sector Features: This paper
focuses on neural network design and arrangement of features
for effective pattern recognition of ROIs. We designed several
neural network connections between the input and the first
hidden layers as shown in Fig. 4. In this neural network system,
the first layer also functions as a correlation layer that trans-
forms and encodes the signals from input nodes into correlation
features for further neural network process. Fig. 4(a)~(c) illus-
trates the full connection (FC), a self correlation (SC) network,
and a neighborhood correlation (NC) network, respectively.
Network connections with multiple sectors (i.e., 20°, 30°, 40°,
and 50° of the NC) are grouped separately as independent NC
paths. In the following study, we used four SC paths for a single
sector and thirteen NC paths for four types of multisectors.
The method of using the multiple correlation connections
was motivated by our research experience in two-dimensional
(2-D) convolution neural network (CNN) [(2-D CNN)] where
we found that more than ten multiple convolution kemels in
the CNN were necessary in the detection of lung nodules and
microcalcifications [25].

Compared with 2-D CNN systems, the computation required
in the one-dimensional (1-D) CNN (e.g., 144 input features)
is relatively small. The combination of the networking paths
described earlier for multiple circular path convolution neural
network (MCPCNN) was implemented using C programming
language. The internal computation algorithm used in the
MCPCNN shares the same convolution process as that in the
2-D CNN [25]. Rotation invariance and flip invariance for
training the 1-D convolution kernels in the MCPCNN were
employed.

The fully connected neural network is a conventional feed-
forward MLP neural network. The signals of the fully connected
neural network join the other network processes (i.e., SC paths
and NC paths) at the single node of the output layer. The signal
received at the output node is scaled between zero and one.
During the training, zero and one were assigned at the output
node to perform backpropagation computation for a nonmass
and a mass, respectively. The backpropagation is computed in
such a way that the computed incremental errors [see equations
(9) and (10)] are retraced into every independent network path.
Excluding the output layer, the SC and NC signals are indepen-
dently arranged and are processed through the 1-D convolution
process in the forward propagation. The learning algorithms for
all three types of circular network paths are based on the back-
propagation training method:

Let VO(n/, &) represents an input signal at the node n’ and
sector 8. The signal processed through an NC path and to be
received at each node, », on the first hidden layer is

Niingy(n)
=D V!, &) Wine (v, o; n)] +vey(m) (3)

s n'
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Fig. 4. Three types of network paths connecting the input and the hidden layers in the MCPCNN. (a) FC path. (b) SC path. Eeach node on the layer connects
to a single set of the features (1, a, g, ¢) for the fan-in and fully connects to the hidden nodes for fan-out. (c) A NC path. Each node on the layer connects to the
input nodes of adjacent sectors for the fan-in and fully connects to the hidden nodes for fan-out. The fan-in nets emphasizing SC in (b) and NC in (c) represent
convolution weights (i.e., the same type of sectors possess the same set of weighting factors).

where b 1(n) represents the bias term and Wjncy(n', s'; n)
is an array associated the 2-D nets that fan-in to a given receiving
node, n. Each element of Wj[ncj(n’, 8'; n) is the weight factor
connected to node 7 from node n’ sector & through a NC path,
J»and & covers a range of neighborhood sectors corresponding
to each type of NC path. Note that multiplications between the
input nodes and connecting weights are computed first followed
by taking the sum of the products for those nodes and sectors in-
volved. The operation is repeated by shifting the weights from
one set of sectors to the next. The procedure involving array
multiplication passing through every sector is referred as the
1-D convolution operation that takes place in the sector dimen-
sion. The signal processed through an SC path and to be received
at a node, n, on the first hidden layer is a special case of an NC
path when ¢ only covers one sector

Nisqi(m) = |D_ V', &) - Wysqy (s m) | + bscy(n)

C))
where Wyiscj(n';n) is the weight factor connected to n from
node n’ through a SC path, 7, regardless of the sectors. A total
of 18 paths (1 FC, 4 SC paths, and 13 NC paths for four types
of multisectors) were used in our experiment described later.
Nevertheless, the signals processed through a path and to be
received at each node, n, on the first hidden layer is

Vo(n) = S (Np(n)) ®)

where p is one of the network paths and S(z) is a sigmoid func-
tion given by

— 1
l14+exp(—-2)

The sigmoid function would produce modulated values ranging
from zero to one. The signals on other hidden layers in each path
are processed the same as a conventional fully connected neural
network. Other than the first hidden layer, the receiving signals
at a hidden layer, I, collected from the previous hidden layer, !
to one, are merged from the nodes in the last layer and are given
by

Vin) = S (N'(n))
=5 (Z Vi) - Wi nsn) + b"‘(n)) Q)

S(z) = ®

where »’ and n denote the nodes at layers ! — 1 and [,
respectively.

Let the tth change of the-weight be AW} (n’, s';n) and the
tth change of the bias be Ab'(t). The error function is defined
as

1 2

E=3(T-0) ®)

where T and O denote the target output value and the actual
output value, respectively when the input values Vo(n’, §'), are
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Fig. 5. A schematic diagram, showing the MCPCNN and sector features of masses, that was used in the following study.

entered in the network. In this model, the error backpropagation
algorithm, which updates the kernel weights, is given below

AWt +1]

=7 (E > 6, $im, 8) - Vit (n, 8))
+aAW[H ©
AbLft+1] = ”Z 261',"'1 (', 8'in, s) + albft]  (10)

& (n', &', 5)

=5 (N}y(n', 5')) (ZZ&;‘“(n, ) - Witi(n, s)) .
n e an

In the case of the last layer

§%(n) = 8" (N*(n)) (T(n) — O(n)) (12)
where S'(z), », &, and T denote the derivative of S(z),
the leaming rate, the weighting factor contributed by the
momentum term, and the desired output image, respectively.
Furthermore, sors’ = 1andp = 1 when! # 0.

During the training, we added an isotropic constraint to the
weights of the 1-D convolution kemnels so that

W(n, —s) = W(n, s) (13)
where ¢ is not the fully connected path. These additional con-
straints are used to induce the kernels functioning as correlation
processing filters and could facilitate the algorithm in searching
for an appropriate filter.

2) Resampling the Training Set Through Utilization of Rota-
tion and Flip Invariance of the Features: In this neural network
model, there are no starting and ending sectors. The forward and
backpropagation computation can start from any sector. Consid-
ering a flipped patch, the characteristics of mass feature should
remain the same. To take advantage of this flip invariance, the
same numerical target value can be assigned at the output node

for the flipped image patch in order to double the amount of
cases during training.

Since we designed a 10° increment for each rotation, every
SC or NC path would process through 36 times using the de-
fined features for each image patch. To simplify this network
computation, we shifted one small sector (four nodes) on the
input layer at a time to conduct the circular convolution process
with the SC and NC kemels in the following experiments. By
reversing the sequence of the sector, one can train the flipped
version of the suspicious masses. Hence, using the properties
of the rotation invariance and flip invariance for the neural net-
work training literally increases the number of the training set
by a factor of 72.

In summary, we have developed a complete detection pro-
cedure for the automatic recognition of mammographic masses
including background adjustment, contrast enhancement, ROI
segmentation, feature extraction, and MCPCNN system with a
training method. Fig. 5 shows a flow diagram for the essential
sections of the computational procedures.

IV. EXPERIMENTS AND RESULTS

As described in Section ITI-A, the 200 mammograms were se-
lected from the MIAS database and the BAMC database for the
study. Of the 200 mammograms, 50 mammograms are normal,
and each of the 150 abnormal mammograms contains at least
one mass case of varying size, subtlety, and location. Both the
cranio-caudal (CC) and medio-lateral oblique (MLO) projec-
tion views were used. The films were digitized with a com-
puter format of 2048 x 2500 x 12 bits (for an 8” x 10" area
where each image pixel represents 100 ;sm square). Ninety-one
mammograms, either a CC or an MLO view film, were selected
from 91 patient film jackets. No two mammograms were se-
lected from the same patierit. All the digitized mammograms
were miniaturized to 512 x 625 x 12 bits using 4 x 4 pixel av-
eraging before the method was applied. According to radiolo-
gists, the size of small masses is 3~15 mm in effective diameter.
A 3-mm object in an original mammogram occupies 30 pixels
in a digitized image with a 100-um resolution. After reducing
the image size by four times, the object will occupy the range
of about 7-8 pixels. The object with the size of seven pixels
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is expected to be detectable by any computer algorithm. After
preprocessing and an object screening based on the circularity
test and the size test (between 3 and 30 mm), a total of 125 sus-
picious areas were selected from the testing mammograms (91
cases) for this study. Specifically, the screening procedure of re-
ducing FPs involves two steps: 1) image patches with circularity
less than 0.25 or diameter greater than 30 mm were eliminated
and 2) ) using probability modular neural network to rule out
the majority of FPs. Of the 125 suspicious areas, 75 ROIs con-
tained masses based on corresponding biopsy reports with one
experienced radiologist reading. Of 75 masses, 39 were malig-
nant and 36 were benign. This set of ROIs was used in [19] and
discussed in [19, Fig. 6 and Table II].

A. Experiment 1

Of the 125 suspicious areas, we randomly selected 54 com-
puter-segmented ROIs where 30 patches were matched with the
radiologist’s mass identification and 24 were not. This database
was used to train two neural network systems: 1) a conven-
tional three-layer neural network and 2) the proposed MCPCNN
training method using the same neural network learning algo-
rithm. The structure of the MCPCNN was described earlier. In
the study, we used one fully connected path, four SC paths, four
NC paths covering two sectors, four NC paths covering three
sectors, three NC paths covering four sectors, and two NC paths
covering five sectors in the first step network connection for the
MCPCNN. All paths in the neural network have their hidden
layers. Only one hidden layer per path was used. Both neural
network systems were trained by the error backpropagation al-
gorithm by feeding the features from the input layer and regis-
tering the corresponding target value at the output node. Com-
pletion of the training was determined by the mean square error
lie, 2N (T:—0;)? /N, where N is number of samples] when
it was approximately reduced to 3 x 103, Once the training of
the neural networks was completed, we then used the remaining
71 computer segmented ROIs for the testing. Forty-five out of 71
ROIs were masses and 26 ROIs were not. Neither the images nor
their corresponding patients in the testing set could be found in
the training set. The neural network output values were fed into
the LABROC4 program [29] for the performance evaluation.

" The results indicated that the areas (4.) under the receiver op-

erating characteristic (ROC) curves were 0.7869 + 0.0536 and
0.8443 + 0.0457 using the conventional neural network (MLP)
and the MCPCNN, respectively. The ROC curves of these two
neural network systems are shown in Fig. 6(a). The A, value
was 0.7869 =+ 0.0536 when using the MLP method with 125
hidden nodes. The performance of the MLP remains about the
same at 0.7809 £ 0.0551 of A, using the same neural network
parameters but with 30 hidden nodes.

We also invited another senior mammographer to conduct an
observer study using the ROC study protocol. The mammogra-
pher was asked to rate each patch using a numerical scale rang-
ingfrom zero to ten for its likelihood of being a breast mass.
The image patches were displayed on a SUN monitor (Model:
GDM-20D10). The image size shown on the monitor was re-
duced to approximately 7/ x 9" as compared with the original
film size (8 x 10”). These 71 numbers were also fed into the
LABROC4 program. The A, of the mammographer’s perfor-
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Fig. 6. The ROC curves obtained from corresponding experiments. (a) Shows
that the performance of MCPCNN training method is superior to that of the
conventional MLP method. The highest curve is the ROC performance of the
senior mammographer. (b) Shows that the ROC results were increased using the
leave-one-case-out procedure in both neural network systems. The MCPCNN
still showed higher performance than conventional MLP method.

mance on this set of test cases was 0.909 £ 0.0340. The corre-
sponding ROC curve is also shown in Fig. 6(a).

B. Experiment 2

We also conducted a leave-one-case-out experiment (i.e.,
jackknife procedure) using the same database. In this ex-
periment, we used those image patches extracted from 90
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© TABLE 1
ROC PERFORMANCE OF THE TEST METHODS IN DISTINGUISHING TRUE AND FALSE MASSES
Comparative Analyses of A;of A, of P Statistical
Methods Method (1) Method (2) Values S’M‘ icance
Experiment 1 {1) Radiologist vs. (2) MCPCNN| 0.909 +0.0340 | 0.8443+0.0457 | 0.1855 No
[1) Radiologist vs. (2) MLP 0.909 +0.0340 | 0.7869 +0.0536 | 0.0447 Yes
(1) MCPCNN vs. (2) MLP 0.8443+0.0457 1 0.7869 +0.0536 | 0.1344 No
Experiment 2 (1) MCPCNN vs. (2) MLP 0.8866 +0.0289}0.7985 +0.0394 | 0.0241 Yes

mammograms (one mammogram per case) for the training and

- used the image patches (most of them are single) extracted
from the remaining one mammogram as test objects. The
procedure was repeated 91 times to allow every ROI extracted
from each mammogram to be tested in the experiment. For each
individual ROI, the computed features were identical to those
used in Experiment 1. Again, the training was stopped when
the mean square error value approximately equal to 3 x 103,
Both neural network systems were independently trained and
evaluated with the same procedure. The results indicated that
the A, values were 0.7985 £ 0.0394 and 0.8866 =+ 0.0289 using
the conventional neural network (MLP) and the MCPCNN,
respectively. The performance of the MLP decreased to an A,
of 0.7608 X 0.0429 using the same neural network parameters
but with 30 hidden nodes. Fig. 6(b) shows the ROC curves of
these two neural network systems using the leave-one-case-out
procedure [30] in the experiment.

‘We also used CLABROC program [31] to analyze the ROC
data and compare the ROC results. The results and their sta-
tistical significances using two tailed p value of 0.05 as the
threshold are shown in Table I. The radiologist’s performance
is greater than conventional neural network system with a p
value of 0.0447 in the first experiment. The MCPCNN was also
proven to be superior to the MLP with a statistically significant
result (p = 0.0241).

V. DIsCUSSION

It is known in the field of artificial intelligence that the key
factors in pattern recognition are: 1) effective methods in the
extraction of features and 2) classification methods for the
extracted features. In this study, we showed that the training
method designed to guide the analyzer is also an important
factor for a pattern recognition task. Though this finding is not
new, the research of developing training methods for various
pattern recognition tasks has not been established in the field
of medical imaging. Our studies demonstrated that with proper
network connections and task-oriented guidance, organized
features would assist the neural network in performing the task.

Technically speaking, a feed-forward MLP neural network
provides an integrated process for classification and sometimes
for feature extraction. The output values of the hidden nodes
can be interpreted as a reorganized set of features presented to
the output layer for classification. The drawback of the MLP is,
the user has a very little control and little understanding about
the network learning. The MCPCNN is a network design that
partially remedies these issues and is applicable for any pat-
tern recognition task associated with ROIs. The MCPCNN (a

member of the CNN family) possesses shared weights in the
hidden layer(s) that act as filter kernels for extracting correlated
features. With a higher resolution mammogram, a finer sector
(<10°) would be preferred for the analysis mass, especially for
the study of classification of masses. During forward and back-
propagation training, the kemels would comply with both sig-
nals from input and output layers for all training cases, so as
to maximize the classification performance. We do not recom-
mend using 2D CNN for the detection of masses because the
mass sizes vary from a few millimeters to 4 cm or even larger. It
would require a large fixed size to cover the maximum mass size
when using the 2-D CNN. The varieties of mass shapes and po-
tential long spiculated patterns make the use of the 2-D CNN not
practical. Since the MCPCNN processes the features computed
from sectors, it does not limit the sizes of its ROIs. Best of all,
the MCPCNN also has the ability to classify partially obscured
masses. The 2-D CNN, however, would be more appropriate for
the detection of microcalcifications and small lung nodules.

As far as the research in the detection of masses is concerned,
we have shown that use of MCPCNN with sector features is an
effective approach. Since the MCPCNN coordinates the input
data and performs correlation between features of adjacent sec-
tors in the first stage of data processing, the internal neural net-
work learning algorithm can be changed if a learning algorithm
is found to be more effective. In fact, the MCPCNN is a tech-
nique that can effectively classify features arranged in the polar
coordinate system. A technique using the rubber band straight-
ening transformation, independently developed by Sahnier ez al.
[11], for the detection of masses also employs a similar con-
cept in extracting feature and/or texture in the polar coordi-
nate system. We believe that integration of features and texture
values computed at small sectors will be the research trend in
mass detection and tumor classification.

VI. CONCLUSION

In the clinical course of detecting masses, mammographers
usually evaluate the surrounding background of a radiodense
area when an ROI is suspected. In this study, we simulated
this fundamental concept with a neural network system (i.e.,
MCPCNN). In order for th&¢ MCPCNN to function, boundary
features of the suspicious region in each radial sector were com-
puted. We found that the MCPCNN is capable of analyzing
correlated features within the sector and between adjacent sec-
tors, which led to an improvement in detecting mammographic
masses.

Through this study, we found that the selected features are
somewhat effective in the detection of masses. These features
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were “computationally translated” from the qualitative descrip-
tors of BI—RAD. These features can be extended for the im-
provement of the mass detection, but this task is beyond the
scope of this paper. With the preliminary studies shown above,
we found the MCPCNN coupling with the proposed training
method produced greater results than the conventional neural
network. We found that the performances of both neural net-
work systems were improved in Experiment 2. This may have
occurred due to the number of training samples that was in-
creased from 54 to 124. In Experiment 2, the 4. value was im-
proved by 0.042 using the MCPCNN, which was higher than

the A, difference 0f 0.012 obtained by the conventional training .

method. The results implied that the MCPCNN learned more ef-
fectively than the conventional neural network when the number
of training cases was increased. With the use of a larger database
and advanced texture features proposed by others, it is expected
that the performance of MCPCNN should be significantly im-
proved. This paper does not intend to claim the best mass de-
tection system, in comparison to similar systems; but rather its
goal is to report a potentially better neural network structure for
analyzing a set of mass features.
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ABSTRACT

This study attempted to accurately segment tumors in

- mammograms. Although this task is considered to be a

preprocessing step in a computer analysis program, it plays an
important role for further analysis of breast lesions. The region
of interest (ROI) was segmented using the pixel aggregation and
region growing techniques combined with maximum likelihood
analysis. A fast segmentation algorithm has been developed to
facilitate the segmentation process. The algorithm repetitively
sweeps the ROI horizontally and vertically to aggregate the
pixels that have intensities higher than a threshold. The ROI is
then fuzzified by the Gaussian envelope. With each segmented
region for a given threshold step in the original ROI, the
likelihood function is computed and is comprised of probability
density functions inside and outside of the fuzzified ROI. We
have implemented this method to test on 90 mammograms. We
found the segmented region with the maximum likelihood
corresponds to the body of tumor. However, the segmented
region with the maximum change of likelihood corresponds to
the tumor and it extended margin.

INTRODUCTION

The goal of breast mass segmentation is to separate suspected
masses from surrounding tissue as effectively as possible.
While it is a pre-processing step of Computer Assisted
Diagnosis (CAD,) it is extremely important in the diagnostic
process, because a major characteristic used to separate
malignant and benign tumors is shape [1, 12]. Over the years
researchers have used many methods to segment masses in
mammograms. Petrick [8] et al. used a filtering method called
the Density Weighted Contrast Enhancement (DWCE) method.
Karssemeijer and te Brake implemented a discrete dynamic
contour model [1}. Li et al. developed a competetitive
classification stragegy, which uses a combined soft and hard
classification method for deciding if segmented regions are true
or false positives. Furthermore, many researchers have
implemented methods based on pixel aggregation [3, 5, 7, 9).

A major issue faced by CAD, researchers is the ability to
properly obtain the boundaries of masses because these
boundaries are often obscured by surrounding breast tissue.
While benign masses can be easily detected due to their well-
defined boundaries, the borders of malignant tumors often blend
into surrounding tissue, making it exceedingly difficult to
properly segment them as effectively as possible. We have
developed a maximum likelihood method [3] and have added a
component to not only segment the tumor body, but to segment
the extended tumor borders as well.
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2. METHODS

The next several sections will describe the database, as well as
provide the theoretical background used to develop our
algorithm.

2.1. Database

The image samples were chosen from several databases
compiled by the ISIS Center of the Georgetown University
Radiology Department as well as the University of South
Florida’s (USF) Digital Database for Screening Mammography
[2]. They are a mixture of "obvious" cases and "not obvious”
cases. The "obvious" cases contain tumors that are easily
identifiable as malignant or benign while the "not obvious"
cases are those that radiologists find difficult to observe and/or
classify. Forty malignant and forty benign tumors were tested
during this experiment. The Georgetown University films were
scanned at a resolution of 100um while the USF films were
scanned at 43.5 and 50 pm’s. We compensated for this
discrepancy in resolution by reducing the USF images to half
their normal sizes. Hence, the original test images for this study
all contain 12 bits per pixel with approximately 100 um pixel
size.

2.2. Pixel Aggregation and Region Growing

Pixel aggregation is an automated segmentation method in
which the region of interest begins as a single pixel (seed point)
and grows based on surrounding pixels with similar properties,
e.g., grayscale level or texture [4, 11]. Typically, the seed is
located at somewhere in the center region with the highest
intensity in the suspected lesion. It is a commonly used method
[7, 9, 10] due to its simplicity and accuracy. The next 4-
neighboring pixel is checked for similarity so that the region can
grow. Our algorithm checks the 4-neighbors of the seed pixel
and its grown pixels uses a graylevel threshold. The threshold
was used as a similarity criterion. The algorithm repetitively
sweeps the ROI horizontaily and vertically to aggregate the
pixels that have intensities higher than a threshold. Sweeping
the neighboring pixels in the alternate direction is a fast region
aggregation algorithm that we have recently developed. The
iteration ends when no_ more pixels are acquired in the sweeping
step (see Figure 1). The segmented region can be grown by
repeating the same method with a lower threshold value. Based
on these segmented regions, we can evaluate the regions and
region changes with respect to the threshold values. We do not
recommend using the 8-neighbor connectivity method for it may
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invade the surrounding tissue at the critical threshold to be
discussed below.

At the conclusion of the each region segmentation in the
sweeping process, there were several holes located inside the
detected ROL. We used a chain code to detect the boundaries of
these holes and then fill them using a threshold criterion. The
output images of the above computer procedures are then used
as templates (S;) for the maximum likelihood analysis.

2.3. Fuzzy Shadow and Maximum Likelihood Analysis

By using the same seed point with multiple intensity threshold
values, we obtained between 20 and 50 segmentation partitions
per lesion. Kupinski and Giger proposed a maximum-likelihood
based method to choose the best partition [3]. However, their
method did not completely address the issue in identifying the
tumor margin. Since the mammographic masses may or may
not have their extended boundaries, it is important to separate
the region of tumor body from its extended region. We adapt
Kupinski and Giger’s point in composing the ROI with a
Gaussian envelope, which further fuzzies the tumor margin.
With each segmented region for a given threshold step in the
original ROI, the likelihood function is computed so that it
consists of probability density functions inside and outside of
the fuzzified ROL

The maximum likelihood method is based upon the probability
density function (pdf), which for an image, is the histogram.
Given a template S;, which was described in section 2.1.1. we
can model the image’s pixel probabilities in the following way:

p(/(x, yjs, , a})={H "S(/(x, y)exp[—(x’ +%) /(20,2)1);(,:, y)es, 0

Hislf{x y)): (x)es,

where Hist represents the histogram function. A Gaussian
envelope with variance of centered at the seed point gray level
was employed. The Gaussian envelope is a special case of the
proposed fuzzy shadow. The size and standard deviation (o)
used in the experiment were 1400 and 160 pixels, respectively.
These values were found experimentally, however, there are
more statistical methods found in literature. Equation (2)
defines the likelihood that a tumor is contained in the segmented
region S;:

pls, o7)= ( I1 )p(f(x, Ws.ot) @)

x,yel,

Equation (2) was implemented by summing the log of the
probabilities of all pixel values inside S; (segmented region) and
outside S; (background). Note that S; is the segmented region
based on the original ROI, not the fuzzified ROI. The likelihood
for various partitions was then analyzed to obtain the final
segmentation. The partition is chosen for the body of the tumor
based on the following criterion:

p(I|SWa,’)=argma>s p(f(x,yIS.-,df) &)
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Based on our investigation, we further define that the step before
maximum changes of likelihood value is the tumor margin:

d p(f(x,ij,.,O',z) (4)

di

p(I‘lSmugin’o-lz)-—- argm

3. RESULTS

The following graphics are experimental results for one patient.
Figure 1 shows the a portion of the pixel aggregation process,
Figure 2, is the plot produced by summing all probability values
inside and outside L; for various intensities, and Figure 3 shows
the original image followed by the tumor body image and the
extended tumor body image.

Figure 1 - Several iterations of the pixel aggregation process
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Figure 3 — (a) original image, (b) image of tumor body, (¢) image of tumor body with extended borders
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o Instead of using the Gaussian enveloped image for the
segmented region, we use the original image for each step of
region growing in this study, simply because Gaussian
enveloped image distorts the original intensities and boundaries.
However, it facilitates the likelihood analysis by fuzzifying the
tumor region. We found that this partition effectively
segmented the tumor body, but often did not include the borders.
We performed a study prior to the one described in this paper on
30 mammograms and discovered that the best segmentation
result including the tumor margin occurs at the steepest ascent

location on the plot of p(IlS,,a,z). In this particular study, the

maximum value on the plot of p(I!.S',.,o',z)conesponded to the

tumor body segmentation result (see Figure 3). Figure 2
shows that this sharp increase occurs at intensity 2745, therefore
it can be inferred that the best segmentation result is produced
when the seed point intensity is approximately 2745. The
maximum value on the curve occurs at intensity 2815, therefore,
when the tumor body segmentation result was found for this
particular intensity value.

We discovered that this method is particularly helpful when the
masses have ill-defined borders. In most cases in which the
mass boundary is ill-defined, the probability curve increases in a
steady fashion, while the cases in which the mass boundary is
well-defined, the steep ascent location is very abrupt. In some
cases we found that this ascent location to be so abrupt, that it
could be compared to a step function.

4. DISCUSSION AND CONCLUSION

We have developed a mass segmentation method that is capable
of delineating a mass body, as well as its borders. We believe
that it outperforms traditional region growing techniques.
Traditional region growing without the use of a quantitative
method can introduce a great deal of subjectivity because given
a large number of segmentation results, what is perceived to the
best one can vary greatly from one researcher to another. By
analyzing the likelihood of the segmented regions, it is rational
to identify that the maximum likelihood of the segmented
regions corresponds to the tumor body and the maximum
likelihood change of the segmented regions corresponds to the
tumor margin. For the latter, we would like to indicate that
when the segmented region significantly increases with the
threshold increment, the likelihood value would also
significantly change. In most cases, the significant change of
the segmented region implies that the tumor margin grows and
invades the surrounding tissues because their intensity
difference is usually very small.
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ABSTRACT

The purpose of this study is to investigate the efficacy of image features versus likelihood features of
tumor boundaries for differentiating benign and malignant tumors and to compare the effectiveness
of two neural networks in the classification study: (1) circular processing-based neural network and
(2) conventional Multilayer Perceptron (MLP). The segmentation method used is an adaptive
region growing technique coupled with a fuzzy shadow approach and maximum likelihood analyzer.
Intensity, shape, texture, and likelihood features were calculated for the extracted Region of Interest
(ROI). We performed these studies: experiment number 1 utilized image features used as inputs
and the MLP for classification, experiment number 2 utilized image features used as inputs and the
neural net with circular processing for classification, and experiment number 3 used likelihood
values as inputs and the MLP for classification. The experiments were validated using an ROC
methodology. We have tested these methods on 51 mammograms using a leave-one-case-out
experiment (i.e., Jackknife procedure). = The A, values for the four experiments were as follows:
0.66 in experiment number 1, 0.71 in experiment number 2, and 0.84 in experiment number 3.

Keywords: Computer-assisted diagnosis, breast cancer, convolution neural networks, feature
extraction

1. INTRODUCTION

Many studies have investigated the efficacy of various features used in Computer-Assisted
Diagnostic (CAD,) systems. Sahiner et al.!> used texture and morphological features and used a
genetic algorithm to select the best image features. In a study used to differentiate dense tissue
from fatty tissue, Byng et al.! used fractal dimension and regional skewness as features. Qian et
al.'? calculated circularity, normalized deviation of radial length, intensity variation, mean intensity
difference, and the mean gradient of region boundary. Wei et al.'® calculated the following eight
texture features from the co-occurrence matrix: correlation, energy, entropy, inertia, inverse
difference moment, sum average, sum entropy, and difference entropy. In a later study, Sahiner et
al.’® calculated a Fourier descriptor, convexity, rectangularity, perimeter, Normalized Radial Length
(NRL) mean, contrast, NRL entropy, circularity, NRL area ratio, NRL standard deviation, NRL zero
crossing count, perimeter-to-area ratio, and area. These and other studies have been successful in
finding features that are effective in separating from benign features, however, our study uses
traditional features as well as segmentation features as inputs to two different classifiers.
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In the United States, breast cancer accounts for one-third of all cancer diagnoses among
women and it has the second highest mortahty rate of all cancer deaths®. In various studies it has
been shown that only 13% - 29% of suspicious lesions were determined to be malignant' ' 7 which
indicates that there are high false positive rates for biopsied breast lesions. A higher predictive rate
is anticipated by combining the mammographer’s interpretation and the computer analysis. This
could be of great clinical value because a lower amount of false positives in breast biopsies would
reduce anxiety among patients and their families. Other studles show that 7.6-14% of the patients
have mammograms that produce false negative diagnoses™ . Alternatively, a CADy system can serve
as a clinical tool for the radiologist and consequently lower the rate of missed breast cancer.

2. METHODOLOGY

The next several sections will describe the database, as well as provide the theoretical
background used to develop the CADy experiment.

2.1 Database

The image samples were chosen from several databases compiled by the ISIS Center of the
Georgetown University Radiology Department as well as the University of South Florida’s (USF)
Digital Database for Screening Mammography®. Twenty-eight malignant and twenty-three benign
tumors were tested during this experiment.

2.2 Maximum Likelihood Segmentation Method

The segmentation method used in this study is an adaptive region growing technique coupled
with a fuzzy shadow approach and maximum likelihood analyzer. The region growing technique
aggregates surrounding pixels with similar properties, e.g., grayscale level. It is a commonly used
method due to its simplicity and accuracy. The intensity threshold is usually used as a similarity
criterion. We used the highest intensity as the seed point with multiple intensity threshold values
and decreased the gray level in successive steps. This method by itself generated a sequence of
contour on the mass; however, the computer did not have the ability to determine the boundaries
interfered by other tissues and to choose the proper partition corresponding to the experts’
perception. A fuzzy operator and a maximum-likelihood component were therefore added to the
region-growing algorithm. The likelihood function is comprised of the likelihood of the composite
probabilities for probability density functions (PDF’s) inside (p(S;|pdf;)) and outside (p(S;jROI)) a
given contour (see example contour in Figure 1)

Log(P,)=log(p(S, | pd, ))+ log(p(s, |ROT)) 0

The subscript i represents the thresholding step, or, intensity value used to produce a given contour.
The area inside the contour is the original ROI, which has been multiplied by a fuzzy shadow,
whereas the area outside the contour is the original ROI.  The likelihood that the contour represents the
mass’s extended borders is determined by assessing the maximum change of the likelihood function®®:
d(log(P, -

(‘i » v ©
To summarize, the best contour is determined by locating the steepest jump in likelihood values, i.e.,
the intensity corresponding to this location will produce the best contour.

arg max
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Figure 1:  (2) ROI used to calculate p(Sa[pdf;). (b) ROI used to calculate p(S;,|ROI) where m is
the m™ contour corresponding to the maximum value of likelihood function indicated in eq. (2).

2.3 Feature Calculation

The features used to separate the malignant and benign masses were a combination of 18
statistical descriptors along with the likelihood features. The features have been separated into
global features and sector features, where global features are those for which one value per mass is
calculated. Sector features are those features calculated on the 10° ROI as it was divided into 10°
sectors in the polar coordinate system (see Figure 2); therefore, each mass contained 36 sectors.

Figure 2: Sample map used to calculate sector features

In this study, three sets of features were used. One set of features is related to the use of the
likelihood function curve which will be discussed in section 3. The other sets of features are as
follows:

Global Features: skewness, kurtosis, circularity, compactness, and mass perimeter.

Local Features: mean intensity value, contrast, standard deviation inside the sector, sector area,
deviation of the normalized radial length, radial length, roughness, energy, inertia, entropy, inverse
difference moment, and difference entropy.
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3. EXPERIMENTS

In experiment 1 the input features consisted of 6 global image features combined with 12x36
sector image features to yield a total of 438 features. The classifier used for this experiment was a
MLP neural network. It contained 18 hidden nodes and one output. Experiment 2 used the same
image input features as those used in experiment 1, yet the classifier used for this experiment was the
MCPCNN. The MCPCNN also contained 18 hidden nodes and one output. The neural networks
were both tested and trained using the jackknife method. In experiment 3 the input values
consisted of likelihood values that were extracted from the segmentation likelihood functions (see
Figures §, 6). The classifier used in this experiment was a MLP with 15 hidden nodes and one
output. The neural network for this experiment was also tested and trained using the jackknife

method. The results were analyzed using the LABROC4 analysis tool'’. The experiments are

summarized in Table 1.

4. RESULTS

The following table (Table 1) is a summary of the results achieved by the two classifiers
used in the experiments described in section 2 of this paper. The corresponding ROC curves are
shown in Figure 4. Two likelihood functions (features used in Experiment 3) along with their
segmentation results (one malignant and one benign) are shown in Figures 5 and 6.

Table 1: Summary of Classification Results

Experiment Features Neural Network | A, values
1 Image Features MLP 0.66
2 Image Features MCPCNN 0.71
3 ML-curve as features MLP 0.84
1.2
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Figure 4: ROC Results (TPF: True Positive Fraction, F_BP:Experiment 1, F_MCP:
Experiment 2, P_Curve: Experiment 3)
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INTRODUCTION Elderly patients and patients with cancer are often treated with combination therapy such as
depression, and cardiopulmonary diseases in addition to for their primary symptoms. The potential for drug-drug
interaction under these conditions is high. Such interactions may cause changes in the pharmacokinetics, especially for
drugs with narrow therapeutic indices (1, 2). These changes can alter efficacy and toxicity of the administered drugs. Drug-
drug interactions may occur due to common metabolic pathways, but also due to interference at the P-glycoprotein (Pgp)
level. Pgp, which is a nonspecific transport protein, is expressed constitutively at the blood-brain-barrier (BBB), intestine,
kidney, and liver (3). Interaction at the blood-brain barrier may occur if Pgp is blocked by a drug and a concomitantly
administered second drug, which would not penetrate brain if administered singly, can then penetrate the brain freely (4,5).
The potential for drug-drug interactions is not routinely studied at the Pgp level during drug development. Its presence is
assumed only after unexpected clinical symptoms. In this study, we have used a dynamic NMR method based on detection
of a fluorinated drug, trifluoperazine (TFP), in the brain, in combinations with an immune suppressor, cyclosporin A to
demonstrate the drug penetration through the blood-brain-barrier due to Pgp modulation.

METHODS Sprague-Dawley rats, weight 200 g, were used. The rats were anesthetized by i.p. injection of sodium
pentobarbital 40 mg/kg. After anesthesia, a Pgp modulator cyclosporin A (15 mg/kg) was administrated through the tail
vein. Fifteen minute later, trifluoperazine (25 mg/kg) was injected. For detection of trifluoperazine in the brain, **F NMR
studies were performed using 4.7 T, 33 cm horizontal bore NMR machine. A 22 mm x 17 mm surface coil was positioned
immediately adjacent to the rat skull. A small bulb containing trifluoroacetic acid was used as an extern reference. After
shimming and tuning, a series of 10 minutes spectra were obtained. The repetition time was one second.

RESULTS In Figure 1, the spectrum A shows a control, in which only TFP was administered. The spectrum B shows
an increase amount of TFP crossing BBB after co-administering a ng modulator, cyclosponn A. This demonstrates the
synergistic effect of cyclosporin A with TFP. Figure 2 shows nine continuous °F spectra from the rat brain after
administering cyclosporin A and TFP. Each spectrum takes 10 minutes. The first spectrum in the Figure 2 is taken before
TFP injection as a baseline. For the second 10 minutes during the TFP injection, there is an increase of fluorine signal. The
following spectra 3-9 show the accumulation of TFP and gradual decreasing of fluorine signal due to metabolism.
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Figure 1 . Figure 2

DISCUSSION This experiment has demonstrated that concomitantly administered a Pgp modulator enhanced TFP, an
antipsychotic drug, crossing BBB in vivo. It also demonstrated the pharmacokmetxcs of TFP accumulation in the brain. The
pharmacology of this noninvasive model for realizing opening of the BBB in case of possible drug-dmg interaction at the
Pgp level was based on drug know to modulate Pgp and on the drug which can be detected by °F NMR spectroscopy. In
case of polypharmacy, like with elderly or cancer patients, drug-drug interaction is not always understood. The noninvasive
dynamic NMR spectroscopy study of drug-drug interactions can be a very useful tool in drug development.
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